Problem 1

a) For the circuit shown, use Kirchhoff's rules to write down equations for the upper loop, the lower loop, and the node on the left side (where the 8Ω and 11Ω resistor are connected)
b) Solve the equations found in part a) simultaneously for the three unknowns I_{1}, I_{2}, and I_{3}.
c) What is the significance of the negative answer for I_{2} ?

Problem 2

The resistors and batteries in this circuit have the following values:
$\mathrm{R}_{1}=\mathrm{R}_{4}=6 \mathrm{k} \Omega$
$\mathrm{R}_{2}=10 \mathrm{k} \Omega$
$\mathrm{R}_{3}=5 \mathrm{k} \Omega$
$\mathrm{V}_{1}=6 \mathrm{~V}$
$\mathrm{V}_{2}=4.5 \mathrm{~V}$
a) Write the two junction or current equations for the two junctions c and d, then combine them to eliminate I_{5} and express I_{4} by the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3}.
b) Write down loop equations for the top loop, the bottom loop, and the big loop (outside loop). Use the expression for I_{4} from a) so that each equation only contains I_{1} and/or I_{2} and/or I_{3}, i.e. when you are done there should not be an I_{4} and I_{5} in your equations.
c) Solve the system of 3 equations by any means at your disposal. State or show how you do this.
d) Determine the potential difference between points a and b, i.e. what would a voltmeter show if you'd connect it to a and b. Explain with a few brief words.
e) How much power does the entire circuit dissipate?
f) Pretend someone assembling the circuit is making a mistake and puts in battery V_{2} backwards, i.e. the - terminal connected to point a and + terminal on the opposite side. How is the power dissipation affected by this mistake? [State if the dissipation increases or decreases and justify your answer numerically]

Problem 3

Find the currents in all the resistors in the circuit shown. This time don't use the loop and junction equations as in Problem 1, but try to simplify the circuit by combining resistors in parallel and series until you have one battery and one resistor. For details see sections 1.3.1 and 1.5.1 in your
 text.

For this circuit, you would take the $2 \mathrm{k}, 3 \mathrm{k}$, and 2 k resistors in parallel and collapse them into one equivalent resistor, which then is in series with the 5 k resistor. Once you have the series combination of the 5 k and the $2 \mathrm{k} / 3 \mathrm{k} / 2 \mathrm{k}$ in parallel, that in turn is in parallel with the 10 k resistor. So now you have one resistor and a $4-\mathrm{V}$ battery. The current that flows out of the battery and into the one resistor is the same current that flows out of the battery in the actual circuit into all the resistors. Then you retrace your steps, i.e. now you have the battery with the $10-\mathrm{k}$ resistor in parallel with the equivalent value of 5 k in series with the parallel combination of $2 \mathrm{k} / 3 \mathrm{k} / 2 \mathrm{k}$. You find the current through the 10 k resistor by realizing the voltage drop across it is 4 V (due to the battery), and so on. In this way you unfold the circuit back to the original one, each time finding the currents for the next step.

Problem 4

\#13 from section 1.9 (p. 38) in textbook
All currents can be expressed in terms of a rational factor and V_{o} and R, e.g. $\frac{6}{17} \frac{V_{o}}{R}$.
Similarly, all voltages can be expressed in terms of a rational factor and V_{o}, e.g. $\frac{5}{21} V_{o}$.

Problem 5

\#14 from section 1.9 (p. 38) in textbook

Problem 6

\#16 from section 1.9 (p. 38) in textbook

Problem 7

\#19 from section 1.9 (p. 39) in textbook
For this find the results for the Thevenin equivalent circuit (Fig. 1.40) only.

Problem 8

\#27 from section 1.9 (p. 40) in textbook
Think of the circuit as a voltage divider cascade, i.e. a voltage divider that is connected to another voltage divider.

Problem 9

\#7 from section 1.9 (p.38)

Problem 10

\#8 from section 1.9 (p. 38)
7. © (tefi.f) Explicitly demonntrate that equation 1.16 is true for two copmanm wr paralle:
2. (te:L.5) Explicitly demonstrate that equation 1.17 is true for two capacitons in series.

A paralle-plate capacitor is built using two metal phntes each of surface area $A=100 \mathrm{~cm}^{2}$ plates are separated by 1 mm and the gap is filled with air. (a) whe potential difference sctom then capacitor? (b) If earch plate has $1 \mu \mathrm{C}$ of charge on it. wher is capacitor?
10. Shore that two inductors conillocted in weries will add like resistors.
11. Show that two inductors comnected in parallel will add like resistors
12. 8 (tel.6) For the circuit in Figure 1.37 above, what is the ratio of $R_{2}: R_{1}$ such that the volus. across A and B is $\frac{t}{2} V_{0}$? What is the ratio of $R_{2}: R_{1}$ such that the voltage across A and B is $\frac{j V_{2}}{}$
13. (te1.7) Conaider the circuit shown in Figure 1.38 which is built using six identical resistori. U_{8} Kirchoff's rules to solve for the current flowing through each resistor in the circuit. What is the voltage drop actoss each resistor in the circuit? (To facilitate labeling, use a notation such ma l, and V_{N} whicre these represent the current flowing from point p to point q, and the voitage doy in going from point p to point q.)

Figure 1.38: The circuit for problem 13.
14. $3^{(\text {te: } 1.8)}$ We now attach two output terminals to the circuit from problem 13. The resilting circuit is shown in in Figure 1.39. (a) What is the voltage between the terminals G and H I! (b) What curreut llows from G to H ? (c) If we connict a wire from G to H, what current flon through the wire and what is the voltage between G and H ?

Figure 1.39: The circuit for problem 14. flowing through the resistor?
16. (te:1.9) Replace the circuit from problen
voltage source and $R_{t h}$ is a new resistance thith the simpler one shown in Figure 1.40. Vis is at the same answer to the current and voltage quat are the values of $V_{\text {in }}$ and $R_{\text {th }}$ such that you get (

Figure 1.40: The circuit for problem 16.

Figure 1.41: The electrical device for problem 17
17. You are given an electrical devioe with two output terminals as shown is Figure 1.41. Draw the Thevenin equivalent circuit for device as seen between the two terminals, A and B,
18. (Ie:T:T0) Replace the circuit in Fipure 1.39 with the one thows in Figure 1 in
current source that alwnys delivers I_{N} amps of current and R_{N} in in Figure 1.42 whree I_{N} is a values of I_{N} and R_{X} such that you get the same ansurd R_{V} in a new resstance. What are the and H as in problem 14?

Figure 1.42: The circuit for problem 18.
12. (te:t.14)
a wariable resistor, R_{y}, betwern the for the circuits shown in Figures 1.40 and 1.42 by placing s , we map a set of (V, I) points. As stated previousls. As we vary the value for R_{y} from 0 to Fivaloes of R_{V} and evaluate I and V between the G, this curve should be linear. Pick four to Plot thepe), or the Norton (Figure 1.42) equivalent circuit. Doerminals for either the Thisenin the line?
20. a (tet.t8) Copaider the tron and the current through R two circuits shown in Figure 1.16 for measaring the wols and that the internal resistapce of that the internal resistance of the voltmeter in $R=100 R$ the measured voltapes and cure of the ammeter is $R_{\mathrm{a}}=0.01 R$. In termis of theter is $R=100 R$ 21. (te:l:13) Show that +he
22. (Ie:l.14) Show that the short-cire ${ }_{2}$ (IR1.15) Sheltage of a circuit is the Thevenin voltage of the circuit.
23. (Je:1.15) Show that equation 1.34 is corret is the Norton current of the dircuit.
*

Figure 1.45: The circuit for problem 24.
24. You are given the dircait shown in Figure 1.43. Sletch the The venin equivalent circuit for the circit as men boling t.
25. © (Ie: L: 10) Determise the parameters of the Thevenin equivalent for the circuit shown in if we 1.4 .

Figure 1.4: The circuit for problem 25.
2a. (te:i.i7) You are given a Hack-bor deviee with two output termintsts., You are asked to chasnctera the beharior of this derike, so you proceed to measure an $I-V$ curve for the circuit. You meser the folloning teo (I, V) pointe: ($20 L_{5}, V_{6}$) and $\left(I_{6}, 5.0 V_{6}\right)$. (a) Sketch the Thiercuitr and Kuthr espurahat circuits for the black boax. (b) Accurately shet ch the $I-V$ curve for the block bor. ib sure to caredilly labd your plot. (c) From your graph, determine the Thévenin voltage. Va. ©f

 to the Thivedin resistance) is connected acrose the output terminals of your black boas. In tuen of $V_{\text {is }}$ adid I_{s}, what is the volage acroes R_{L}, and the current throngh R_{L} ?
27. 8 (le-1.18) You hame a wo-alled ReR laider with teo one
(a) Sircth the Thevenin equimbleut of the with two output ternimals as ohown in Figure 10 terminath to the righe of the difcuit. (b) Sketch ther Ass soen when looking into tbe oupted equishen outper termimale label your axes in terme of I-V curve for your R2R ladder as sea

